Dendritic Homeostasis Disruption in a Novel Frontotemporal Dementia Mouse Model Expressing Cytoplasmic Fused in Sarcoma

نویسندگان

  • Gen Shiihashi
  • Daisuke Ito
  • Itaru Arai
  • Yuki Kobayashi
  • Kanehiro Hayashi
  • Shintaro Otsuka
  • Kazunori Nakajima
  • Michisuke Yuzaki
  • Shigeyoshi Itohara
  • Norihiro Suzuki
چکیده

Cytoplasmic aggregation of fused in sarcoma (FUS) is detected in brain regions affected by amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which compose the disease spectrum, FUS proteinopathy. To understand the pathomechanism of ALS-FTD-associated FUS, we examined the behavior and cellular properties of an ALS mouse model overexpressing FUS with nuclear localization signal deletion. Mutant FUS transgenic mice showed hyperactivity, social interactional deficits, and impaired fear memory retrieval, all of which are compatible with FTD phenotypes. Histological analyses showed decreased dendritic spine and synaptic density in the frontal cortex before neuronal loss. Examination of cultured cells confirmed that mutant but not wild-type FUS was associated with decreased dendritic growth, mRNA levels, and protein synthesis in dendrites. These data suggest that cytoplasmic FUS aggregates impair dendritic mRNA trafficking and translation, in turn leading to dendritic homeostasis disruption and the development of FTD phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies.

Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequ...

متن کامل

Activity-dependent FUS dysregulation disrupts synaptic homeostasis.

The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which ...

متن کامل

Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats.

Ubiquitin-positive inclusion containing Fused in Sarcoma (FUS) defines a new subtype of frontotemporal lobar degeneration (FTLD). FTLD is characterized by progressive alteration in cognitions and it preferentially affects the superficial layers of frontotemporal cortex. Mutation of FUS is linked to amyotrophic lateral sclerosis and to motor neuron disease with FTLD. To examine FUS pathology in ...

متن کامل

Neuropathology of frontotemporal lobar degeneration: a review

Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. Three main clinical variants are widely recognized within the FTLD spectrum: the behavioural variant of frontotemporal dementia (bvFTD), semantic dementia (SD) and progressive non-fluent aphasia (PNFA). FTLD represents a highly heterogeneous group of neurodegenerative disorders which are best classif...

متن کامل

RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum.

Amyotrophic lateral sclerosis and frontotemporal dementia form two poles of a genetically, pathologically and clinically-related disease continuum. Analysis of the genes and proteins at the heart of this continuum highlights dysfunction of RNA processing and aggrephagy as crucial disease-associated pathways. TAR DNA binding protein and fused in sarcoma (FUS) are both RNA processing proteins who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017